
X server in web browser

PEREZ HERNANDEZ Daniel
<tuvistavie@dcl.cs.waseda.ac.jp>

Thesis submitted in partial fullfillment of

the requirements for the degree of

Bachelor in Information and Computer Science

Student ID 1W09C753-8

Submission Date August 27, 2013

Supervisor Tatsuo Nakajima

Department of Computer Science

School of Science and Engineering
Waseda University

Abstract

Most new users to Linux have a lot of problems to set up a Linux installation, which
is however often necessary for students in computer science. Using a remote server with
already all the necessary tools prepared would therefore be a good alternative. However,
SSH is the most common way to connect to a remote server, and there is no secure way
to connect to a remote server with a graphical user interface. However, having to do
everything over SSH would probably be too difficult for someone who is not yet used
enough to programming and UNIX/Linux. The purpose of this research is to develop an
X server running in any web browser and able to connect to a remote UNIX/Linux server,
so that one could access a remote server using a GUI without any need to install anything
on his or her computer.

Contents

Preface vii

1 Introduction 1
1.1 Motivations . 1
1.2 About the project . 2
1.3 Chapters summary . 2

2 About X protocol 4
2.1 Generalities . 4
2.2 Messages . 4
2.3 Resources . 5
2.4 Example . 6

3 General architecture 9
3.1 General overview . 9
3.2 Differences with a normal X server . 10
3.3 Language and tool choice . 11

4 Server frontend application 13
4.1 General explanations . 13
4.2 Need for the frontend . 15
4.3 Login manager . 16

5 Server backend application 18
5.1 General explanations . 18
5.2 Caching . 19

6 Web browser application 21
6.1 Rendering . 21
6.2 Event handling . 22

iii

CONTENTS iv

7 Discussion 23
7.1 Performances . 23
7.2 Usability . 24

8 Related work 25
8.1 RealVNC . 25
8.2 WeirdX . 25

9 Conclusion 27
9.1 Discussion and future work . 27

A Actor model 28
A.1 Overview . 28
A.2 Scala integration . 29

Bibliography 31

List of Figures

2.1 Overview of the X protocol 1 . 5

3.1 System general communication pattern . 10

4.1 System initialization and execution . 14

v

Listings

2.1 Simple example of an X application . 6
5.1 Possible implementation of requests needing cache 19
6.1 Sample request . 21
A.1 Threading example in C++ . 28
A.2 Threading using actors . 29
A.3 Chat example definitions . 30
A.4 Chat example implementation . 30

vi

Preface

This report is written in partial fulfillment of the requirement for the degree of Bachelor
in Computer Science.

The project presented here is still under active development and will continue to be at
least during the next six months. When writing this paper, the application is at a state
where the main framework is operational and basic examples can be run, but is still very
far from being able to respond to a real world use case. The integrity of the project source
code is available on GitHub and under MIT license.

vii

https://github.com/tuvistavie/scala-x-server

Chapter 1

Introduction

1.1 Motivations
1.1.1 Easy access to Linux

From its first releases, and during several years, Linux has been quite complicated and
not very intuitive to use (eg. no graphic installer) for beginners. In the last few years,
Linux has become much simpler to install, and use in general, with distributions such as
Ubuntu or Fedora integrating a user friendly installer and even tools such as Wubi1 to
make the installation possible from Windows.

However, even if the installation process has become much simpler, the fact is that
a lot of beginners are still having a lot of problems to get a usable Linux environment.
While teaching C programming language as a teacher assistant, I wrote on my personal
blog all the steps to get a usable Linux environment, using the possibly simplest setup:
giving a disk image file to open with VirtualBox. Despite this, a large number of students
still could not get Linux to work properly.

One of the greatest motivation for this project was therefore to create a system to
make Linux available to anyone, even with no computer knowledge at all.

1.1.2 Access from mobile devices

Another interesting possibility for this project is a mobile access from any modern
phone or tablet to a remote machine. By using this system, one could check anything, for
example the status of a running task, on a given machine without having to create or use
a dedicated API for it. This could be useful when the creation of a dedicated tool is not
worth.

1.1.3 Evaluation of new web technologies

Web technologies have been evolving during the last few years, and a lot of new tools
and technologies have been released. With the introduction of websockets, a full duplex
communication between a browser and a web server have become possible. The last

1 http://www.ubuntu.com/download/desktop/windows-installer

1

http://www.ubuntu.com/download/desktop/windows-installer

CHAPTER 1. INTRODUCTION 2

motivation for this project was to try and evaluate these new web technologies, in particular
websockets, to see how well it can be integrated in a resource demanding project.

1.2 About the project

We will here be giving a short overview of what was tried in this project, what can be
done and what still needs to be done.

1.2.1 Achieved tasks

One of the main task of this project was to make a communication possible between
an X client and a modern browser. This is now possible and though not all X requests
and events are supported yet, they can be added simply enough. A simple application can
already be ran using the system, although the number of supported requests and replies
still very limited.

1.2.2 Tasks to be achieved

Still only very few requests, replies and events are supported by the actual system. In
order to be able to respond to real world requests, not only those requests will be needed,
but some requests and other messages that are not defined by the core X protocol will be
needed. We are now working on extending the base system to support these messages, but
given the number of message that must be handled, the stable release of these is going to
take some time.

1.3 Chapters summary

In chapter 2, About X protocol, we will not directly describe the project itself but
rather give some general explanations about the X protocol, which the project is based on.
We will describe the fundamental concepts and the key notions of the protocol so that the
reader can have a sufficient understanding of it to continue reading through this paper.

In chapter 3, General architecture, we will give a general overview of the project and
its architecture. We will explain how the project is split, as well as the responsibilities of
the different part of it.

In chapter 4, Server frontend application, we will explain how this part of the project
is working, and explain more in detail what it is supposed to do and how. We will also
be discussing about the login manager part of the application which is handled in this
application.

CHAPTER 1. INTRODUCTION 3

In chapter 5, Server backend application, we will give more detailed of how the system
is communicating with the X clients, and how the data received and sent to the X clients
is handled.

In chapter 6, Web browser application, we will describe how the frontend roles of the
X server, rendering and event handling, are handled and implemented.

In chapter ??, Evaluation, we will discuss about the general performances of the system,
principally in a qualitative manner, and will also try to evaluate it from an end-user point
of view.

In chapter 8, Related work, we will present two projects that are in some way related
to this project and have some goals in common with it.

Chapter 2

About X protocol

The whole application is using the X protocol[4], we are therefore going to give a brief
presentation of this protocol, for the reader to be able to understand the concepts in this
paper.

2.1 Generalities

The X protocol is a network-transparent protocol for bitmap display. It uses a client-
server architecture, running the server on the computer with the display, and makes the
connection with local and remote clients possible. It is a binary protocol and can be built
on top of any reliable byte stream (eg. TCP).

2.2 Messages

The protocol uses four main types of messages to communicate between the server and
the clients. Those types are

Requests A request is the basic way to communicate from the client to the server and can
be used either to query for some information or to update the display. Some requests
need a reply while other do not. Requests needing a reply can be asyncrhonous or
not.

Replies A reply is the basic way for the server to send back information to the client,
and is usually used to send information about the server.

Events Events are generated by the server and sent to the client to notify it of some event
in the handled display. Event can be used for graphic events (eg. when a window
has been rendered) or for device events (eg. keyboard or mouse event).

Errors Errors can be generated from the client as well as the server for many different
reasons. One of the main reason for errors generated from the server side is for access
to non available resources.

An overview of how these messages are sent is shown in figure 2.1.

4

CHAPTER 2. ABOUT X PROTOCOL 5

Figure 2.1: Overview of the X protocol 1

2.3 Resources

The protocol uses a number of different resources which we will shortly introduce here.

Drawable A drawable is an abstract entity used to draw. It can be a window or a pixmap.

Window There are two types of window: top-level window and subwindows. A top-level
window is the main container for an application and usually contains all the other
components of the application. A subwindow is a window contained in the top-level
window of an application and can be used for anything, from the titlebar to a button
in the application.

Pixmap A pixmap is a region used to draw, but on opposite to a window, it is not shown
until explicitly requested. The content of a pixmap or part of it can be displayed on
a window.

Graphic context A graphic context is a structure containing basic graphic information
to apply to a given request, for example the background and foreground colors, or a
transformation to apply to the shape to draw.

1 Diagram from Wikipedia X Window System Core Protocol

http://en.wikipedia.org/wiki/X_Window_System_core_protocol

CHAPTER 2. ABOUT X PROTOCOL 6

2.4 Example

To end up with the presentation of the X protocol, we will here give a short example
of a communication between an X server and an X client. In this example, we will explain
what happens at the protocol level when the following code, using Xlib2, is ran.� �

1 #include <X11/Xlib . h>
#include <std io . h>

3 #include <s td l i b . h>
#include <st r i ng . h>

int main(void)
7 {

Display * d i sp lay ;
9 Window window ;

XEvent event ;
11 char *msg = " Hel lo , World ! " ;

int s ;

d i sp lay = XOpenDisplay (" l o c a l h o s t : 2 . 0 ") ;
15 if (d i sp lay == NULL)

{
17 f p r i n t f (s tderr , " Cannot open d i s p l a y \ n ") ;

e x i t (1) ;
19 }

21 s = DefaultScreen (d i sp lay) ;
window = XCreateSimpleWindow(display , RootWindow(display , s) , 10 , 10 ,

200 , 200 , 1 , BlackPixel (display , s) , WhitePixel (display , s)) ;

XSelectInput (display , window , ExposureMask | KeyPressMask) ;
25 XMapWindow(display , window) ;

27 while (1)
{

29 XNextEvent (display , &event) ;

31 if (event . type == Expose)
{

33 XFil lRectangle (display , window , DefaultGC(display , s) , 20 , 20 ,
10 , 10) ;

XDrawString (display , window , DefaultGC(display , s) , 50 , 50 , msg
, s t r l e n (msg)) ;

35 }

37 if (event . type == KeyPress)
break ;

39 }

41 XCloseDisplay (d i sp lay) ;

43 return 0 ;
}� �

Listing 2.1: Simple example of an X application
2 Xlib is a library to implement client application using the X protocol. It takes care of all the low-level

details of the protocol, such as byte-swapping, or choosing ids for allocated resources.

CHAPTER 2. ABOUT X PROTOCOL 7

2.4.1 Connection setup

On line 14, the client tries to open the screen 0 of display number 2 for the X server
running on localhost. In the X window system, for TCP connections, like in this
case, the display number 0 should be listening on the port 6000, and other display should
increase the port number by 1. Therefeore, the display number 2 is supposed to be listening
port 6002. If no connection can be established to this host and port, the program fails. If
the connection is established, the client send connection information to the server. The
client first specifies the byte-order (LSBF or MSBF), then the major and minor version
number of the used X protocol, and finally if needed, authorization protocol name and
data. If the connection is rejected, the server sends back a message indicating this, as well
as the reason for rejecting the connection. If the connection is accepted, the server sends
back a message with the necessary server and screen information.

2.4.2 Requests

The XOpenDisplay function actually offers some abstraction for the end user and
does not only initialize the connection but also query for extensions, and setup a basic
graphic context.

The first request to be sent is a QueryExtension request, querying for the BigRequest
3 extension. The client then blocks until receiving a reply from the server. This is however
not decided by the protocol itself, and depending on the request and reply involved, the
client may choose to send the request asynchronously.

The next request to be sent is the request to create a default graphic context. The
created graphic context is the one that will be used when the client uses the DefaultGC
(Display*, int) function.

The client then creates a window, using the information received during the connection
initialization, such as the root window and the black and white pixels information. This
generate a CreateWindow request which does not need a reply, the client therefore sends
the next request straight away.

XSelectInput is used to select the kind of events the client is listening. This is
important to avoid receiving events that will never be hanlded. However, this request
does not exist in the X protocol and ChangeWindowAttributes request with the
event−mask set with the proper value is sent instead.

Finally, a MapWindow request is sent to map the created window on the screen.

3 The BigRequest extension is an extension to allow requests of more than the 262140 bytes.

CHAPTER 2. ABOUT X PROTOCOL 8

2.4.3 Events

The program works around a simple event loop, in which only two kinds of events
are handled: the Expose and KeyPress events. The XNextEvent is a function that
blocks the execution of the program until an event is received from the server, and set the
event when received.

The first received event should be the Expose event, which is generated when a
window is shown on the screen, so that should be generated if the MapWindow request
was handled properly.

The other handled event is the Keypress event, which is generated whenever a key
is pressed on the keyboard the server is listening. In this example, the Keypress event
is not really handled, in the sense that neither the keycode nor the keysims are checked
and the program simply breaks from the event loop, but the event does contain all the
necessary information in order to properly handle it, and those information are usually
indeed checked in a real world application.

2.4.4 Closing the display

As the client creates a number of resources while running, here a graphic context and a
window, those needs to be destroyed when the client program ends. The XCloseDisplay
is a high-level function that takes care to send the appropriate DestroyWindow and
FreeGC requests to the server in order for the resources to be freed properly.

Chapter 3

General architecture

In this project, everything is based on the X protocol, but given the requirements of
the system, there are a lot of things that needed to be handled in alternative ways. The
core X protocol has only remained in the backend of the system, while the other parts and
especially the frontend used in the browser is relying on much more modern technologies.

We will here discuss about the general architecture of this project, including the dif-
ferences with the basic X protocol as well as their reason to be.

3.1 General overview

We will here be giving a general overview of the project.
The project is mainly divided in three different parts, and the general communication

pattern is shown in figure 3.1.

Server backend This application main role is to communicate with the X clients, to
transfer the requests sent by the X clients to the frontend of the system, and to
transfer back the replies and events sent by the frontend to the X clients. Another
important role of this application is to cache information held by the client and the
frontend in order to respond directly to the X clients and avoid unneeded communi-
cations with the frontend.

To illustrate this caching system, let us think about a requests sent by a client to get
the background and foreground pixels of a particular subwindow (the root window
information being sent on connection). If the backend server was not doing any
cache work, the request would have to be sent to the frontend application and then
to the client web browser to get a reply. This would of course increase latency. By
using the cache system, the reply can be handled by the backend and is therefore
almost instant.

Server frontend One of the roles of this application is to act as a bridge to communicate
between the backend application of the system and the web browser JavaScript
application. Another of its role is to act as a login manager. The application receives
an HTTP request with the client Linux/UNIX creditentials check those creditentials,

9

CHAPTER 3. GENERAL ARCHITECTURE 10

..

Remote computer

.

Local machine

.Server
front app

.

Front end

.Server
back app

.

X client

.

Transfer requests

.
Transfer data

.

Replies
Events

.

Requests

Figure 3.1: System general communication pattern

and on success, initializes the server backend for the particular client as well as the
websocket connection to communicate with the web browser.

Web browser application The web browser application is the application running in
the client browser, and has several responsibilities in the system. The first respon-
sibility of this application is to handle the requests received from the server and
to render them in the web browser. The second responsibility is to handle events
occuring in the browser, and to send them back to the server, for them to be handled
by the X client.

3.2 Differences with a normal X server

In this section, we will discuss between the main differences of this project with a
normal X server.

3.2.1 Divided server

In a normal X client/server architecture, the client connects to the server, and com-
municates directly with it. The X server needs to have control over the keyboard, mouse,
screen, and other hardware used to display graphics, and handle events.

This system is very different as first of all, there is not really an X server. Given the
system requirements, the application that communicates with the client and the applica-
tion that listens to the events cannot be the same; handling all the TCP directly in the

CHAPTER 3. GENERAL ARCHITECTURE 11

web browser is not realistic. There is therefore a need to communicate with clients, and
make communication possible with the application acting as the X server frontend.

3.2.2 Communication through websockets

As a consequence of the above difference, another difference is that to implement this
system, we need not only to communicate with X clients using a bytestream such as TCP
sockets, but we also need to use some communication protocol to communicate with a web
browser. The chosen protocol to achieve this is websockets, we will be discussing further
about this decision later in this paper.

3.2.3 Integrated login manager

This project goes further from a normal X server in the sense that the login manager is
integrated and therefore does not depends on the X Display Manager Control Protocol.

3.3 Language and tool choice

The web browser application is written in JavaScript, and we made the choice to avoid
any DOM libraries that could potentially slow down the application and would not be
very useful in this context as the application is almost only using Canvas.

For rendering Canvas, the application uses KineticJS1. KineticJS is a Canvas library
that allows layering and easy event handling.

The application running on the remote server has been almost entirely developed in
Scala. In this section, we will try to discuss objectively about the motivations for choosing
this language. Some of the arguments given are based not only on Scala but also on the
library Akka which integrates very well with the design and syntax of Scala.

In the following paragraphs, we will only give some quite abstract arguments, to avoid
entering in too many details.

3.3.1 Multi-threading

The system is developed to of course support several X client connections for a single
user, but also to accept several user at the same time. This therefore requires a fairly high
amount of threads.

Multithreading is often the source of numerous mistakes when used naively using li-
braries such as pthread for C and C++, or java.lang.Thread for Java. One of the
main reason for this is that it is quite difficult to efficiently keep trace of the threads

1 http://www.kineticjs.com/

http://www.kineticjs.com/

CHAPTER 3. GENERAL ARCHITECTURE 12

accessing a given resource, and this can sometimes lead to deadlocks, starvations, or other
undesired effects[3].

To overcome this problem, Scala makes extensive use of the actor model, where basi-
cally only a single actor (thread) ever accesses the resource and the other actors query this
actor by sending messages, and eventually waiting for responses from it. An actor assures
to treat only a single message at a time, and to treat messages in order they arrive. If a
message arrives while the actor is treating another message, this message will be queued,
and treated afterwards. By using this model, access to a resource can be controled very
easily.

Of course, Scala is not the only language using the actor model. To give an example
between others, Erlang uses this communication system extensively. Furthermore, the
library used in this program, Akka, is also available for Java, however the impossibility
of writing DSL like code in Java due to the inexitance of operator overloading makes the
general syntax less consise and harder to read.

3.3.2 Inter-process communication

This system uses a lot of Inter-process communication(IPC) to communicate between
the backend and frontend applications on the server machine. How easy this communica-
tion is made was also an important criteria in the choice of the language and library.

Based on the above model, inter-process is made very easy, using the same model
over a TCP connection. The Akka library allows a great abstraction for the programmer,
and while IPC would generally require to manually serialize data, and make some other
verification can be done in a completely transparent fashion.

Chapter 4

Server frontend application

The server frontend is the part of the application that ensures the communication
between the backend and the web browser is done properly. It communicates through
TCP sockets with the backend and through web sockets with the web browser.

It also has the important role of login manager. On a client connection, it first checks
the login and password of the user, and launches a new backend instance for the user is
the connection is accepted.

In this chapter, we will give more detailed explanation of how this application works,
the reason for which it is needed, the different pitfalls when implementing it, and some
possible improvements.

4.1 General explanations

This application is, as explained above, a server web application used to communicate
with the web browser. However, the application really has two roles, which are very
different from each other. We will here give a brief description of how these two roles are
handled by the application.

A global overview of the execution of the program seen from the frontend application
can be found in figure 4.1.

During the login phase, the application just acts as a normal web application. The
client sends its credentials through an HTTP request, with some additional information,
such as the size of the web browser window. The application checks the credentials of the
client, and just sends back an error in case they did not match the UNIX/Linux credentials.
If the credentials were correct, two actions happen simultaneously.

• The application launches a process of the backend application with the user id of the
user connecting. When the backend application initializes, it sends a message to the
frontend application to register itself, sending a unique identifier in order for both
application to communicate together. This process usually ends up a little faster
than the websocket connection and the first messages received from the backend
application are queued until the websocket connection is opened. This choice have

13

CHAPTER 4. SERVER FRONTEND APPLICATION 14

.. :Web browser.. :FrontendApp.. :BackendApp....

/login

......

/doLogin

...

check auth

......

launch

...

index

...

register

...

open ws channel

......

transfer request

...

transfer request

...

send events/replies

...

transfer events/replies

....

Main loop

....

Main loop

...

Figure 4.1: System initialization and execution

been made over waiting for the websocket to initialize, in order to improve the
connection speed.

• It also sends the JS application for the web browser through the HTTP response
with a secret token to authenticate the client. When the web browser receives this
response, it initializes a websocket connection with the application, sending the
secret token with it. The application checks for the authenticity of the token, and
if the token is valid, the application accepts the websocket connection and starts
transferring the messages that have been queued while waiting for the websocket
connection to open.

After the having been initialized, the system enters in its main loop as shown in
figure 4.1. The backend application transfers the requests received from X clients to the
frontend application, which then transfer them to the web browser. When a reply or an
event is generated by the browser, it is first sent to the frontend application which then
send the message to the backend application for it to inform the X client accordingly.

CHAPTER 4. SERVER FRONTEND APPLICATION 15

4.2 Need for the frontend

Given the above explanations about the frontend application, one could think that the
communication could be directly be done between the server backend and the web browser,
which is partly true. We will therefore briefly discuss about the need for this application.

4.2.1 Security concerns

The most important reason of this application to be is basic security concerns. The
main point being

• If the backend application and the web browser were communicating directly, as
what user should the backend application be run?

which is a question with probably not any answer. If only a single user was to use the
system, the application could be run as this user, which depending on the port the appli-
cation is running on, could be done without having to change any privilege. However, this
is no longer a valid approach when several users want to use the application at the same
time. In this case, the application could be running as a special user created specially
for that purpose, but in this case, for the user to be able to access their home, this user
should be allowed to access it too, which clearly is not reasonable.

The best solution to solve this problem was therefore to create a kind of dispatcher
application, which act as a frontend, and starts the backend application in a new process
as the given user for each connection. Using this method, the only requirement for the
frontend is to have a way to check the password authentication and to start a new process
as this user. We will discuss about this in the next section.

4.2.2 Distributed system

Another motivation for adding a frontend is that by letting it act as a dispatcher of
the backend application, adapting the system for it to run on several remote computers
should be greatly simplified.

With the current system design, the frontend application and the backend application
have no need to be running on the same machine, and the frontend could therefore act
not only as a dispatcher to launch different process on the active machine, but also as
a dispatcher to run the processes on different machines, on the same local area network,
for example. As the communications between the frontend and backend are already done
through TCP, this part of this application would work without any change, except for the
hostname configuration.

CHAPTER 4. SERVER FRONTEND APPLICATION 16

However, in future versions, we might allow the backend application itself to listen for
websocket connections after the frontend application has ended up the login process. This
would allow the web application to connect directly to the backend application and could
probably reduce the latency.

4.3 Login manager

As explained previously, one of the main role of the frontend application is to act as
a login manager. That is, to check for the user credentials and to start a session for the
user when these are correct.

A large difference with a normal web application is that the information used in this
are completely volatile and only saved on memory, as the only needed ones in the fron-
tend application are the user name and token to authenticate it. Furthermore, once the
connection is closed, these information can be deleted safely and therefore do not need
permanent storage.

When the user connects to the frontend application, the user name and password are
sent through a normal HTTP request. The credentials are then checked using a small
program written in C++1, which simply returns an error code if the password was not
correct or the user not found, or 0 when everything went fine. The calling application can
therefore get sufficient information just by checking the exit code of the program.

The weakness of this approach is that when checking the password, the application
needs to be ran as root, and for obvious security reason, it is better to avoid having an
application with open ports running as root when possible.

When writing this paper, the feature has not been integrated in the application, and
the frontend application needs to be ran root, however, we will soon be re-factoring the
system to take the following approach.

1. Create an authentication server to check the credentials.

2. Set the authentication server to accept only connections from the frontend applica-
tion.

3. Send a request from the frontend application to the authentication server to check
for the credentials.

4. Launch or not the backend application or not depending on the answer from the
authentication server.

1 nix-password-checker is a very small program to check a password (on UNIX/Linux systems) by reading
the /etc/passwd and the /etc/shadow files.

https://github.com/tuvistavie/nix-password-checker

CHAPTER 4. SERVER FRONTEND APPLICATION 17

By using the above process, it is possible for the frontend application to be ran as a
non-root user, and to have a total control on the authentication server running as a root.

Chapter 5

Server backend application

The server backend is the part of the system that communicates directly with the X
clients, and takes care to transfer the necessary requests to the frontend application, as
well as transferring back the replies and events sent from the frontend.

Another important point about this application is that it caches the information re-
ceived from the X client and back from the frontend application, and using this cache tries
to handle requests coming from the X client locally, without transferring them when not
needed.

We will here discuss about how this application is designed and implemented.

5.1 General explanations

The application is launched asynchronously from the frontend application. Therefore,
when starting up, the backend application first sends a message to the frontend to let it
know that the application is now started and ready to receive and transfer messages. This
is a single-way communication and the application does not wait for any answer from the
frontend.

The second step when starting up the backend is to start listening on the port the X
clients will be connecting to. The hostname to listen is statically set using a configuration
file, however as the port to listen to changes depending on the current screen number, the
port number to use to listen for incoming connection is sent as a command-line argument
of the application. Typically, the first application to start will be given the screen number
0, and will therefore be listening on the port 6000 (see 2.4.1).

Finally, the application reads the initialization file of the current user to start launching
applications (eg. a window manager or desktop environment). This file should be placed
in the user home directory, and is called .scalaxsrc, however we plan to use the file
.xinitrc to try to imitate the behavior of startx 1 or SLiM 2.

Once the application have finished initializing, it should received the first requests from
X clients launched when reading the initialization file.

1 startx is a script used to start the X Window System.
2 SLiM (Simple Login Manager) is a graphical login manager for X.

18

http://linux.die.net/man/1/startx
http://slim.berlios.de/

CHAPTER 5. SERVER BACKEND APPLICATION 19

When a request is received, the information given by the request, if any, is cached by
the application, and the request is handled locally when possible, otherwise transferred to
the frontend application. We will discuss about this further in the next section.

To handle requests sent by the X clients, the application first parses the requests and
transforms it in a normal Scala object. It then checks if the requests needs to be handled
locally, if the content of the requests needs to be cached, and finally if the request needs
to be transferred to the frontend and sends it to the frontend through a TCP connection
when needed.

5.2 Caching

As said in the previous section, an important responsibility of the backend application
is to cache data received by both the X clients and the frontend application, and to use
this cache efficiently to try to reduce the most possible the requests and replies transfers
to the frontend application.

The caching system has not yet been implemented in the system when writing this
paper, but the strategy to use is straightforward and should not be too difficult to imple-
ment.

The first step is to check if the requests content needs to be cached or not. As the
requests are implemented as Scala case classes, we could easily add a trait to the requests
that need to be cached. A possible example of this implementation is shown in listing 5.1.� �

trait NeedsCaching { / / d e f i n e t r a i t f o r caching
def cacheRequest () : Unit

}

5 / / mix in t r a i t s to c l a s s needing to be cached
case class CreateWindowRequest (
. . .

) extends Request
with NeedsTransfer / / needs to be t r an s f e r ed to the f ron tend

10 with NeedsCaching { / / needs to be cached
. . .
def cacheRequest () {

/ / do caching l o g i c
}

15 }

/ / handle reques t s needing caching
request match {
case r : NeedsCaching => r . cacheRequest ()

20 . . .
}� �

Listing 5.1: Possible implementation of requests needing cache

CHAPTER 5. SERVER BACKEND APPLICATION 20

Of course, the listing above is quite minimalist, but this should be enough to check if
requests need caching and handle them.

The content of the cacheRequest method being too different for each request, we
will not enter in the possible implementation details here, but at least for the different
resources, the idea would be to save them as an appropriate model instance after checking
that the resource id is valid.

Using this method, the errors of access to unavailable could be done in the backend
application without any need to transfer the request further.

Chapter 6

Web browser application

The web browser application is the interface through which the user connects to the
system and then controls it. It receives messages from the server frontend application
and renders them on the browser screen. It also handles the browser’s events and transfer
them to frontend application.

6.1 Rendering

As mentioned above, the first role of the application is to render the requests received
from the frontend application, and therefore indirectly from the X client running for the
user’s X session. Listing 6.1 shows a sample request that is received through the websocket
channel and rendered by the application.� �

{
" type " : " reques t " ,
" con ten t " : {

" c l i e n t I d " : 1 ,
5 " opCode " : 70 ,

" a c t i o n " : " Po l yF i l l R e c t ang l eReque s t " ,
" reques t " : {

" drawable " : 4194305 ,
" con tex t " : 4194304 ,

10 " r e c t ang l e s " : [{ " x " : 20 , " y " : 20 , " width " : 200 , " he igh t " : 2 00}]
}

}
}� �

Listing 6.1: Sample request

The object contained in the request key is almost exactly the request sent by the X client
to the backend application, translated in JSON, except from the op-code being stored in
the wrapping object to make the request easier to handle. The rest of the message is extra
meta information to help the browser handling requests efficiently.

The rendering implementation is based on KineticJS, and each window is treated as a
different layer so that refreshing the display can be done without having to draw again the
whole screen. This rendering strategy improves a lot performance as the area to redraw
for each request is only the given part of the window and the rest of the display can stay
intact.

21

CHAPTER 6. WEB BROWSER APPLICATION 22

6.2 Event handling

The next of this application is event handling, however, the implementation of this
functionality not being done yet, we will here only give a general overview of the approach
that will be taken to implement it.

The event that are to be handled by the X server are decided by the X client, and are
different for each window.

The windows are created as KineticJS groups. The framework allows each node to
have its own event logic, and groups being node, it is possible to assign all the events
that JavaScript allow to a particular window. Therefore, when a window is set to react to
some events, an event handler aware of the window resource id could be added, sending
the event to the frontend application when triggered.

However, for events such as mouse motions, which trigger with a very high frequency,
the events could be queued and sent when no event is triggered during an arbitrary period
or when more than an arbitrary number of events have already been. This could help
saving bandwidth and improving the general performances of the application.

Chapter 7

Discussion

In the current state of the system, real worlds example cannot be ran, and therefore
a real evaluation of the application is difficult. We will therefore mainly discuss in a
qualitative way to try to evaluate the system.

7.1 Performances
7.1.1 Used technologies

From a hardware level, the system performance should be good enough. We will here
think the data transfer performances as well as the rendering performances.

Data transfer and bandwidth

Bandwidth has been increasing impressively during the last couple of years. About 10
years ago, 512kbits/s ADSL was quite common, and the downstream and upstream rate
was very limited.

However, with the improvement of the communication protocols and the spread of
fiber-optic communication, these rate has become higher and higher. Using fiber-optic
communication, a server

Web browser rendering

Until HTML4, rendering something else than text in a web browser required the use
of some other technologies, such as flash or yet Java applets.

From HTML5, Canvas has appeared in web browser and bitmap rendering can now be
done natively. Furthermore, JavaScript implementations are becoming faster and faster,
and recent JavaScript implementations are way faster than flash or Java applets[1].

In this system, the main purpose of the X server working is to be able to use a Linux
distribution in a web browser, mainly for a normal desktop use and not to play 3D games
in it. This should hardly require more than 10 frames per second, except maybe for
videos. With the current performance of JavaScript and recent processors, such a frame
rate should be easy enough to reach, and we therefore think that rendering performances
should not be too much of a bottleneck for a main stream usage of the system.

23

CHAPTER 7. DISCUSSION 24

7.1.2 System implementation

The system not yet at a very advanced implementation state, but there is however a
point that needs to be fixed in order to improve the general performances.

In the actual implementation of the system, the server frontend application takes care
of handling the client login, but also acts as a bridge between the backend application and
the web browser. That means that all requests and replies pass through this application.

This is bad, and will therefore be fixed in the future releases, for two reasons.

• The requests and replies need to be transferred two times, and therefore have to be
sent over three different channels to go from an X client to the web browser as shown
in figure 3.1.

• If several users connect at the same time, the burden of the frontend application
could become too big. This would slow down all the clients.

This could be greatly improved by having the web browser communicating directly with
the backend application after the login phase.

For this improvement, we would simply need to have the frontend application sending
the authentication token to the backend application after starting it. The web browser
application would then been sent the hostname and eventually port to connect to. When
connecting to the backend application which would check the received token and then
finish setting up the connection.

7.2 Usability

As written in section 1.1, beginners often have a lot of trouble installing Linux. Ac-
tually, we think that this is not anymore a problem proper to Linux, but rather that the
simple fact of installing an operating system on a machine is not as evident as it may
appear for a non-experienced user.

With the system as it is, the user should be able to access the system without any need
to install any new software, not even a virtualization software. The only software that the
user may need to install could be a modern browser, which should be done much more
easily that setting up a virtual environment. Furthermore, all the softwares needed by
the user on the remote machine can be managed by an administrator and the user would
therefore not have any need to take care of the server configuration by himself. This
should make Linux environments much easier to access and use for backend users with no
technical knowledge in computing.

Chapter 8

Related work

This project is not really inspired by or based on any existing project. However, there
are some projects which have some similar functionalities and use cases. We will shortly
present them and explain the main differences with this project.

8.1 RealVNC

RealVNC1 is a remote access software that also allows clients to take control of a
remote computer from their web browsers. There are however some major differences
with this project.

RealVNC uses the Virtual Networking Computing (VNC) protocol to handle commu-
nication between the server and the client.

A big advantage of this method is that an existing implementation of the X server can
be used, as the rendering can be done on the server side and the pixmap is passed through
from the server to the client.

However, an inconvenient of this approach is that it can use a lot of bandwidth and
though some optimization can be done, it remains way higher than a single JSON object
used in this project.

Another difference with this project is that the user already needs to be logged in to
access the remote computer and it can therefore not be used as a login manager, nor can
be used efficiently for multiple users access.

8.2 WeirdX

WeirdX2 is an X server implementation completely written in Java. It is basically quite
different from this project as it is an X server and not a server/client system. However,
by using Java Applets, it is possible to access a remote computer from a web browser.

That said, as the X server is completely running in the web browser and the clients are
directly connecting to it, there are a lot of things that cannot be achieved. For example,

1 http://www.realvnc.com/
2 http://www.jcraft.com/weirdx/

25

http://www.realvnc.com/

CHAPTER 8. RELATED WORK 26

a single instance will only be able to run for a single user, and it seems complicated to log
users in and out through this system.

Chapter 9

Conclusion

Though a lot of work still needs to be done, we have managed to build a system to use
a Linux/UNIX machine from a web browser using the X protocol. We managed to model
and partly implement a system which could be self-sufficient for any graphical access to
a machine running only X clients as graphical applications, which could remove a lot of
dependencies and complexity in some cases.

From this experience, we could also show that new web technologies offer a lot of new
possibilities, and we will try to continuing to prove it while continuing the project.

9.1 Discussion and future work

There are a lot of points that need further confirmation, and we will especially need to
check performance in a real use-case, to see if the system could actually be used responding
to real-world requirements. However, as discussed in section 7.1, we are expecting the
performances to be enough for a daily life usage, and more than enough for educational
purpose such as programming.

Some unsolved problems still remain, such as truetype fonts handling, or large data
transfer. Truetype fonts could be rendered as drawings using Canvas 1 . Large data
transfer could be done opening another websocket channel to avoid blocking the main
communication channel especially when the connection is slow.

This project will continue to be developed, and we will try to reach a real-world usable
implementation in the next six months.

1 The Typeface project seems to be able to render truetype fonts using Canvas.

27

http://typeface.neocracy.org/

Appendix A

Actor model

In this chapter, we will give an overview of the actor model in general, and see how it
can be used with Scala and the akka library.

A.1 Overview

First of all, we are going to briefly explain why and how can this model be useful, and
then explain how it works.

A.1.1 Motivations

The first motivation for the actor model is too make multi-threading simpler and safer.
To give an overview of the problem, in listing A.1 we are going to take a short example
written in C++ using the pthread library for threading.� �

bool resource_manager : : get_resource (int id , r e source& r)
{

pthread_mutex_lock(&this−>_resource_lock) ;
if (!this−>has_resource (id)) {

5 return false ;
}
r = this−>_resource [id] ;
pthread_mutex_unlock(&this−>_resource_lock) ;
return true ;

10 }

/ / i n some other method
if (! manager−>get_resource (wanted_id , wanted_resource)) {

/ / i f wanted id not a v a i l a b l e get f a l l b a c k i n s t e ad
15 manager−>get_resource (fa l lback_id , wanted_resource) ;

}� �
Listing A.1: Threading example in C++

In the above example, the application will deadlock as soon as the wanted_id is not
available in the resource manager, as the lock is not released in that case.

Of course, in a simple example like above, any programmer having a little experience
with threads would notice immediately that the lock is not released and it would probably
would not take too long to debug anyway as the deadlock occurs each time the wanted
id does not exist. However, everything is not always so simple, and as timing plays an
important role when working with threads, deadlocks can be very difficult to debug.

28

APPENDIX A. ACTOR MODEL 29

An important motivation for using the actor model is to give an extra layer of abstrac-
tion to avoid this kind of problem.

A.1.2 Workflow with actors

When working with actors, the basic rule is that actor communicate with each others
only using messages, and the actors’ data should (almost) never be used and even less
modified directly.

The main reason for this rule is that messages are treated sequentially by the actor,
which is enough to avoid having to lock the data each time we try to use it, with the only
condition being to respect the above rule.

We will give a short example of the above example in using the akka library in Scala.� �
class ResourceManager extends Actor {

private var r e source s : Map[Int , Resource] = Map. empty
def r e c e i v e = {

case ResourceRequest (r e s Id) => r e source s . get (r e s Id) match {
5 case None => sender ! NotFound

case Some(resource) => sender ! ResourceReply (resource)
}
. . .

}
10 . . .

}� �
Listing A.2: Threading using actors

Each time an actor receives a message, the receive method is executed, the common
pattern is therefore to match the different messages that could possibly received and to
handle it.

In the above example, when an other actor requests a resource, the ResourceManager
actor checks if the resource exists, if it does it returns the resource to the sender wrapped

in a ResourceReply object to help the receiver handling the response more easily, oth-
erwise it returns a NotFound object.

The reason why no lock is needed here is, as explained above, that messages are treated
sequentially and that actor resources are only accessed through messages, therefore two
threads will never be accessing the same resource at the same time, which simplifies a lot
synchronization.

A.2 Scala integration

The actor pattern integrates very well with Scala for different reasons that we will
briefly discuss about.

APPENDIX A. ACTOR MODEL 30

A.2.1 Pattern matching and case classes

Scala allows very extensive pattern matching. As opposed to switch statements
in a lot of imperative languages, in which only a few predefined types can be match,
Scala allows, through case class and case object to match almost anything. A
case class is an immutable class that have the necessary features to be matched. A
case object is its singleton version.

This makes message handling when using actor very simple and efficient. To give a
short example of it, let think of a chat client which can receive messages when a user
connects, disconnects, or when a message is received. The case classes to use could be
defined as in A.3 and the method handling could be implemented as in in A.4.� �

case class UserConnection (username : Str ing)
case class UserDisconnection (username : Str ing)
case class Message (username : Str ing , message : Str ing)� �

Listing A.3: Chat example definitions� �
class ChatActor extends Actor {

2 private var users : Set [Str ing] = Map. empty
def r e c e i v e = {

case UserConnection (username) => {
user s += username
chatView . putInfo (username + " has connected . ")

7 }
case UserDisconnection (username) => {

user s −= username
chatView . putInfo (username + " has d i sconnec ted . ")

}
12 case Message (username : Str ing , message : Str ing) => {

chatView . putMessage (username , message)
}

}
}� �

Listing A.4: Chat example implementation

This example if of course very minimalist but reflects quite well the simplicity of the model.
Furthermore, the akka library integrates remote actors, which can be used to have the
class handling a TCP connection. If the server sending the messages is using the same
library and the same class definitions, the messages can be passed through TCP only by
changing a configuration file.

Bibliography

[1] Jackson Dunstan. As3 vs. javascript performance. http://jacksondunstan.com/
articles/2209.

[2] Martin Odersky. Programming in Scala second edition. artima, 2008.

[3] Kuo-Chung Tai Richard H. Carver. Modern Multithreading: Implementing, Testing,
and Debugging Multithreaded Java and C++/Pthreads/Win32 Programs. John Wiley
& Sons, 2005.

[4] Robert W.Scheifler. X window system protocol. http://www.x.org/docs/

XProtocol/proto.pdf.

31

http://jacksondunstan.com/articles/2209
http://jacksondunstan.com/articles/2209
http://www.x.org/docs/XProtocol/proto.pdf
http://www.x.org/docs/XProtocol/proto.pdf

	Preface
	Introduction
	Motivations
	About the project
	Chapters summary

	About X protocol
	Generalities
	Messages
	Resources
	Example

	General architecture
	General overview
	Differences with a normal X server
	Language and tool choice

	Server frontend application
	General explanations
	Need for the frontend
	Login manager

	Server backend application
	General explanations
	Caching

	Web browser application
	Rendering
	Event handling

	Discussion
	Performances
	Usability

	Related work
	RealVNC
	WeirdX

	Conclusion
	Discussion and future work

	Actor model
	Overview
	Scala integration

	Bibliography

