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Abstract
While clone detection across programs written in the
same programming language has been studied exten-
sively in the literature, the task of detecting clones across
multiple programming languages is not covered as well,
and approaches based on comparison cannot be directly
applied. In this thesis, we present a clone detection
method based on supervised machine learning able to de-
tect clone across programming languages. Our method
uses an unsupervised learning approach to learn token-
level vector representations and an LSTM-based neural
network to predict if two code fragments are clones. To
train our network, we present a cross-language code clone
dataset — which is to the best of our knowledge the first
of its kind — containing more than 50000 code fragments
written in Python and Java. We show that our method
is able to detect code clones between Python and Java.
We also compare our method to state-of-the-art tools in
single-language clone detection and show we achieve bet-
ter F1-score.

1 Background
Code clone detection is the task of detecting similar piece
of codes inside or across software projects. Literature has
mostly focused on detecting clones for code fragments
written in the same programming language [1]. How-
ever, it is very common for large systems to be divided
in smaller sub-systems implemented using different pro-
gramming languages. Being able to detect code clones
across these sub-systems could help finding refactoring
opportunities, but it requires detecting code clones across
programming languages.

Although some approaches to cross-language clone de-
tection such as tree comparison based approach using a
common intermediate representation [2] have been pro-
posed, to the best of our knowledge no approach using
only source code and not relying on similarity between
input programming languages currently exists.

In this paper, we propose a supervised learning ap-
proach to detect cross-language clone detection and pro-
vide a dataset to train our model. The implementation
is partly available on GitHub1.

2 Our proposal
2.1 Overview
Our method is divided into two main parts: learning a
token-level vector representation for each language, and
learning a function to classify code clones.

1https://github.com/tuvistavie/bigcode-tools

2.2 Token-level vector representation
To learn token-level representation, we based our method
on the skipgram algorithm [3] and adapted it to use the
tree structure information in the AST. Given a large set
of programs PA written in programming language A, the
algorithm works as follow. First, we generate a vocab-
ulary V composed of the most frequently found tokens
in PA. The actual maximum number of tokens |V | is a
hyper parameter of the algorithm. After having gener-
ated the vocabulary, we traverse all the ASTs in PA and
for each token at node t, we find a set of context nodes
{n1, · · · , nk} consisting of the node ancestors, siblings
and children. The maximum depths for each of these are
also hyper parameters of the algorithm. We then use the
algorithm described in [3] — we feed all the generated
pairs (t, n) to a negative sampling objective and use the
weights of the trained hidden layer as token embeddings.

2.3 Code clones classification
We use the following process to predict if two code frag-
ments cA and cB are clones or not.

First, we use a depth-first search to transform cA and
cB ASTs into a sequence of tokens. We then map each
token in this sequence to its vector representation learned
in 2.2 to obtain VcA and VcB . We then compute the clone
score s as a real value between 0 and 1 using the following
equation,

s = σ
(
W+ |rcA − rcB |+W× (rcA ⊙ rcB ) + b

)
(1)

where rcA and rcB are the output representations of each
AST as a single vector in Rd after having been encoded
by an LSTM. W× and W+ are weights of the model and
we compute their dot product with respectively the mul-
tiplicative and additive distances of the vectors, which
have been found to be efficient for detecting sentence
similarity in natural languages [4]. The model is trained
using binary cross entropy loss.

3 Experiments
We performed experiments to generate token-level vector
representation for Java and Python, and to detect clones
between source code written in these two languages.

3.1 Token-level vector generation
We run token-level vector generation experiments for
Java using all the Apache projects written in Java, which
corresponds to around 400000 files. We run the same ex-
periments in Python using popular projects fetched from
GitHub, representing a total of about 140000 files. We
generated embeddings for vocabularies of size 500, 1000,
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Figure 1: Java language level token embeddings

Table 1: Java-Python clone prediction results
F1 Precision Recall

Pretrained 0.66 0.55 0.83
Untrained 0.61 0.49 0.82

No identifier 0.51 0.40 0.71

10000 and 30000 and stripped all identifiers from the to-
kens to keep only language level constructs. We obtained
the best results when using a window size of 2 for ances-
tors, 1 for children and ignoring siblings. When generat-
ing embeddings for language level constructs only, our
model clustered correctly statements, expressions and
declarations, as shown in figure 1.

3.2 Clone detection experiments
Supervised learning approach for cross-language clone
detection requires pairs of code fragments implementing
the same functionality in two different languages. We
choose to generate our dataset from coding competitive
programming website, as they contain a large number of
short programs implementing the exact same function-
ality. We have scraped all the Python and Java data
from AtCoder2. We collected in total about 45000 code
fragments, almost equally balanced between Java and
Python, across a set of about 600 different tasks. We
split the dataset in training, cross-validation and test
datasets and run two different types of experiments.

First, we trained our model by providing pairs of code
fragments containing 20% of clones to our model — for
each clone pair we feed, we generate 4 non-clone code
pairs and feed them to our model. We train the model
to detect clone between Java and Python and also try
to perform Java only clone detection. We show the re-
sults we obtained for both in tables 1 and 2 where “Pre-
trained” uses the pretrained embeddings generated in 3.1
with a vocabulary size of 10000, “Untrained” randomly
initializes embeddings instead and “No identifier” uses
embeddings generated without token identifiers, yielding
a vocabulary of about 100 tokens.

Our results show that the model does not perform as
2https://atcoder.jp

Table 2: Java-Java clone prediction results
F1 Precision Recall

Pretrained 0.77 0.67 0.92
Untrained 0.73 0.65 0.85

No identifier 0.69 0.56 0.90

Table 3: Comparison with SourecerCC
F1 Precision Recall

Our method 0.21 0.12 0.85
SourcererCC 0.05 0.63 0.03

well for cross-language clone detection, which confirms
our intuition that it is a harder task than single-language
clone detection. Our pretrained embeddings improve the
performance of our model in both experiments. The per-
formance of our model decreases when we do not use the
identifiers information, but we obtain reasonable results
especially in a single-language context, suggesting than
we do learn information about the code structure.

In the next experiment, we compare our approach to
SourcererCC [5]. We use around 1000 files, but as our
model can currently only take pairs of code as input, we
need to generate the n2 pairs for n files to test yielding a
dataset with a very low ratio of clones. We suspect that
the low precision in table 3 comes from this difference
in the data distribution. However, SourcererCC cannot
detect clones on this data set, with a recall close to 0,
and while our precision is low, we achieve a high recall
meaning that we could at least provide clone candidates.

4 Future work and conclusion
We propose a supervised learning approach capable of
detecting cross-language code clones. We also provide a
code clone dataset to learn and evaluate a model using
the proposed approach.

In future work, we want to further explore how we can
make better use of the tree structure of the AST when
encoding it. We also want to introduce a hash-layer to
our model to be able to index vectors and perform clone
detection in linear time.
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