Automatic Patch Generation by Learning Correct
Code
Fan Long, Martin Rinard

Daniel Perez

The University of Tokyo

Nov 21, 2016

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 1/19

Goal

Premises
@ All program contain bugs

@ We cannot be sure if a program contains bugs

We would like to fix bugs automatically as much as possible

[ENN A @ R VATV YR i IV 7S Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 2 /19

About patch generation systems

Patch generation mostly work in the following way
@ Defect localization
© Patch generation
© Patch ranking
@ Patch validation

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 3/19

Introduction

Defect localization

The approach used here assumes that there is effectively a defect and
that automatic tests fail.

It then detect the defect as follow
@ Priority on statements frequently on failure

@ Priority on statements executed infrequently on success
Then uses heuristics to find the defect localization.

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 4 /19

Patch generation

Assumptions
This approach here assumes the following
@ The code is almost correct

@ The program can be fixed by modifying a single statement

[ENN A @ R VATV YR i IV 7S Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 5/19

Patch generation

Assumptions
This approach here assumes the following
@ The code is almost correct

@ The program can be fixed by modifying a single statement

Patch anatomy

Copy and Replace S Q[replace v1 with v2]; S

memset(&e, 0, sizeof(e)); S

if(CO){ .. }else{..} — Lif (C&&E){ .. }else{..}
if (O){ ... }else{..} — Lif(C||E){ .. }else{ ..}
S — if(E){S}
Replace S — S[replace vl with v2]
%
%

Initialize S

[ENN A @ R VATV YR i IV 7S Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 5/19

Patch ranking

Previous approaches acted as follow
@ No sorting
@ Random order
@ Heuristic ranking

This paper main contribution is a way to sort generated patches
efficiently.

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 6 /19

Patch validation

After sorting the goal is to get a list of patches which pass the tests
© Actually patch the source code
© Drop the patches which do not pass the tests
© Repeat on until finding n patches which pass the tests

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 7 /19

Introduction

Improvements

The main contribution of this paper paper is the improvement of
patch ranking.

State-of-the art patch generation systems used heursitics to rank
correct patches.

This paper proposes a machine learning based approach to learn from
correct human patches.

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 8 /19

Insights and assumptions

Assumptions
@ The code is almost correct

@ The program can be fixed by modifying a single statement

[ENN A @ R VATV YR i IV 7S Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 9 /19

Learning from correct code

Insights and assumptions

Assumptions
@ The code is almost correct
@ The program can be fixed by modifying a single statement

Insights
@ Correct patches share universal features that hold across
applications
@ These features capture interactions between the patch and the
surrounding code
@ These features can be learned to recognize correct patches

[ENN A @ R VATV YR i IV 7S Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 9 /19

Probabilistic model

Given a program p and
@ L(p): program points that the system can try to modify
e /€ L(p): modification point

M(p, I): possible transformations at /

m € M(p, /): a program modification
@ 0: a patch defined as (m, /)
@ ¢(p,m,[) : extracted features in p for (m, /)

the goal is to maximize
P(3 | p,0) = P(m, 1] p,0)
when the patch is correct

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016

10 / 19

Probabilistic model

The probability P(m, /| p,0) is given using the following model

P(m. 1| p,0) = %A.B
A=(1- o
B eXp (¢<p7 m, /)) 0)

a ZI’GL(p) Zm’GM(p,l’) exp (¢(p) m/’ //> ’ 9)
Z = partition function

In A, r(p, /) is given by the defect localization and 3 = 0.02
B is the weight of the patch divided by the sum of the weight of all
other patches

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 11 /19

Learning from correct code

Feature extraction

A key point is that features must be universal (i.e. not application

dependent)
The extracted features are divided into two types

o Modification features

e The kind of modification
e The relationship between the patched statement and the

modification kind
@ Program value features: how variables are used in the original

program and in the patch
Program specific information is abstracted (e.g. variable names,

values)

12 /19

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016

Program value features

Commutative operators Is an operand of +, *, ==, !=
Binary operators Is an operand of -, /, <, >
Unary operators Is an operand of —, ++, !

occurs in an assign/loop statement
Enclosing statements occurs in a branch condition
is a function call parameter
Value traits Is a local or global variable, is argument

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 13 /19

Learning from correct code

Training process

The training process uses the following steps
@ Collect correct patches written by humans
© Generate patches from the source before the patch
© For each patch, compute the AST difference
@ Extract the patch features

© Compute # to maximize the probability of the human patches to
be true

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 14 /19

Repair algorithm

The repair algorithm is the same as for existing patch generation
systems

© Localize the defect

© Generate the patches for the defect

© Use the learned parameters 6 to rank the patches

@ Validate the patches by running the test suite
The system assumes that the defect is detected by the test suite.

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 15 /19

Training set

The system has been trained with a total of 777 patches

pr 12
curl 53
httpd 75
libtiff 11
php 187

python 114
subversion | 240
wireshark | 85

Total 777

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 16 / 19

Experimental results

Out of 69 defects, the system finds 39 plausible patches, in which 18
are correct with a timeout of 12h.

Plausible Correct
App LoC | Defects Prophet | SPR | Prophet | SPR
libtiff 77k 8 5 5 2,2 1,1
lighthttpd | 62k 7 3 3 0,0 0,0
php 1046k 31 17 16 13,10 10,9
gmp 145k 2 2 2 1,1 1,1
gzip 491k 4 2 2 1,1 1,0
python 407k 9 5 5 0,0 0,0
wireshark | 2814k 6 4 4 0,0 0,0
fbc 97k 2 1 1 1,1 1,0
Total 69 39 38 18,15 | 16,11

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 17 /19

Conclusion

Conclusion

@ Experimental results confirm the hypothesis: correct code share
properties across applications

@ The learning approaching used outperforms existing heursitics
approaches

@ Capturing the interaction between the patch and the program is
essential to learn meaningful features

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 18 /19

References

e Long, Fan and Rinard, Martin, Automatic Patch Generation by
Learning Correct Code, POPL’16

@ https://www.youtube.com/watch?v=d-FTp3eXnQ38

[ENTTN A @ NN VATV VR Fe TS) Il A utomatic Patch Generation by Learning Cori Nov 21, 2016 19 /19

https://www.youtube.com/watch?v=d-FTp3eXnQ8

	Introduction
	Learning from correct code
	Results
	Conclusion

