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Introduction

Goal

Premises
All program contain bugs
We cannot be sure if a program contains bugs

We would like to fix bugs automatically as much as possible

Daniel Perez (The University of Tokyo) Automatic Patch Generation by Learning Correct Code Fan Long, Martin RinardNov 21, 2016 2 / 19



Introduction

About patch generation systems

Patch generation mostly work in the following way
1 Defect localization
2 Patch generation
3 Patch ranking
4 Patch validation
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Introduction

Defect localization

The approach used here assumes that there is effectively a defect and
that automatic tests fail.
It then detect the defect as follow

Priority on statements frequently on failure
Priority on statements executed infrequently on success

Then uses heuristics to find the defect localization.
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Introduction

Patch generation

Assumptions
This approach here assumes the following

The code is almost correct
The program can be fixed by modifying a single statement

Patch anatomy
if (C) { ... } else { ... } → if (C && E){ ... } else { ... }
if (C) { ... } else { ... } → if (C || E) { ... } else { ... }

S → if (E) { S }
Replace S → S[ replace v1 with v2]

Copy and Replace S → Q[replace v1 with v2 ]; S
Initialize S → memset(&e, 0, sizeof(e)); S
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Introduction

Patch ranking

Previous approaches acted as follow
No sorting
Random order
Heuristic ranking

This paper main contribution is a way to sort generated patches
efficiently.
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Introduction

Patch validation

After sorting the goal is to get a list of patches which pass the tests
1 Actually patch the source code
2 Drop the patches which do not pass the tests
3 Repeat on until finding n patches which pass the tests
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Introduction

Improvements

The main contribution of this paper paper is the improvement of
patch ranking.
State-of-the art patch generation systems used heursitics to rank
correct patches.
This paper proposes a machine learning based approach to learn from
correct human patches.
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Learning from correct code

Insights and assumptions

Assumptions
The code is almost correct
The program can be fixed by modifying a single statement

Insights
Correct patches share universal features that hold across
applications
These features capture interactions between the patch and the
surrounding code
These features can be learned to recognize correct patches
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Learning from correct code

Probabilistic model

Given a program p and
L(p): program points that the system can try to modify
l ∈ L(p): modification point
M(p, l): possible transformations at l
m ∈ M(p, l): a program modification
δ: a patch defined as ⟨m, l⟩
ϕ(p,m, l) : extracted features in p for ⟨m, l⟩

the goal is to maximize

P(δ | p, θ) = P(m, l | p, θ)

when the patch is correct
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Learning from correct code

Probabilistic model

The probability P(m, l | p, θ) is given using the following model

P(m, l | p, θ) = 1

Z · A · B

A = (1− β)r(p,l)

B =
exp (ϕ(p,m, l) · θ)∑

l′∈L(p)
∑

m′∈M(p,l′) exp (ϕ(p,m′, l′) · θ)
Z = partition function

In A, r(p, l) is given by the defect localization and β = 0.02
B is the weight of the patch divided by the sum of the weight of all
other patches
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Learning from correct code

Feature extraction

A key point is that features must be universal (i.e. not application
dependent)
The extracted features are divided into two types

Modification features
The kind of modification
The relationship between the patched statement and the
modification kind

Program value features: how variables are used in the original
program and in the patch
Program specific information is abstracted (e.g. variable names,
values)
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Learning from correct code

Program value features

Commutative operators Is an operand of +, *, ==, !=
Binary operators Is an operand of -, /, <, >
Unary operators Is an operand of -, ++, !

Enclosing statements
occurs in an assign/loop statement

occurs in a branch condition
is a function call parameter

Value traits Is a local or global variable, is argument

Daniel Perez (The University of Tokyo) Automatic Patch Generation by Learning Correct Code Fan Long, Martin RinardNov 21, 2016 13 / 19



Learning from correct code

Training process

The training process uses the following steps
1 Collect correct patches written by humans
2 Generate patches from the source before the patch
3 For each patch, compute the AST difference
4 Extract the patch features
5 Compute θ to maximize the probability of the human patches to

be true
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Learning from correct code

Repair algorithm

The repair algorithm is the same as for existing patch generation
systems

1 Localize the defect
2 Generate the patches for the defect
3 Use the learned parameters θ to rank the patches
4 Validate the patches by running the test suite

The system assumes that the defect is detected by the test suite.
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Results

Training set

The system has been trained with a total of 777 patches

pr 12
curl 53

httpd 75
libtiff 11
php 187

python 114
subversion 240
wireshark 85

Total 777
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Results

Experimental results
Out of 69 defects, the system finds 39 plausible patches, in which 18
are correct with a timeout of 12h.

App LoC Defects Plausible Correct
Prophet SPR Prophet SPR

libtiff 77k 8 5 5 2,2 1,1
lighthttpd 62k 7 3 3 0,0 0,0
php 1046k 31 17 16 13,10 10,9
gmp 145k 2 2 2 1,1 1,1
gzip 491k 4 2 2 1,1 1,0
python 407k 9 5 5 0,0 0,0
wireshark 2814k 6 4 4 0,0 0,0
fbc 97k 2 1 1 1,1 1,0
Total 69 39 38 18,15 16,11
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Conclusion

Conclusion

Experimental results confirm the hypothesis: correct code share
properties across applications
The learning approaching used outperforms existing heursitics
approaches
Capturing the interaction between the patch and the program is
essential to learn meaningful features
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